ORIGINAL PAPER

Simultaneous bio-reduction of nitrate, perchlorate, selenate, chromate, arsenate, and dibromochloropropane using a hydrogen-based membrane biofilm reactor

Jinwook Chung · Bruce E. Rittmann · William F. Wright · Reid H. Bowman

Received: 24 January 2006 / Accepted: 29 March 2006 / Published online: 5 July 2006 © Springer Science+Business Media B.V. 2006

Abstract We tested the hypothesis that the H₂-based membrane biofilm reactor (MBfR) is capable of reducing multiple oxidized contaminants, a common situation for groundwater contamination. We conducted bench-scale experiments with three groundwater samples collected from California's San Joaquin Valley and on two synthetic groundwaters containing selenate and chromate. The actual groundwater sources had nitrate levels exceeding 10 mg-N l⁻¹ and different combinations of anthropogenic perchlorate + chlorate, arsenate, and dibromochloropropane (DBCP). For all actual groundwaters, the MBfR reduced nitrate to less than 0.01 mg-N l⁻¹. Present

in two groundwaters, perchlorate + chlorate was reduced to below the California Notification Level, 6 µg-ClO₄ l⁻¹. As(V) was substantially reduced to As(III) for two groundwaters samples, which had influent As(V) concentrations from 3 to 8.8 μg-As l⁻¹. DBCP, present in one groundwater at 1.4 µg l⁻¹, was reduced to below its detection limit of 0.01 μg l⁻¹, which is well below California's 0.2 µg l⁻¹ MCL for DBCP. For the synthetic groundwaters, two MBfRs initially reduced Se(VI) or Cr(VI) stably to Se° or Cr(III). When we switched the influent oxidized contaminants, the new oxidized contaminant was reduced immediately, and its reduction soon was approximately the same or greater than it had been reduced in its original MBfR. These results support that the H₂-based MBfR can reduce multiple oxidized contaminants simultaneously.

J. Chung (☒) · B. E. Rittmann Center for Environmental Biotechnology, Biodesign Institute at Arizona State University, 1001 South McAllister Ave., Tempe, AZ 85287-5701, USA e-mail: Jinwook.chung@asu.edu

W. F. Wright Department of Civil & Geomatics Engineering & Construction, California State University, Fresno, CA 93740-8027, USA

R. H. Bowman Applied Process Technology, Inc, Pleasant Hill, CA 94523, USA

J. Chung · B. E. Rittmann Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3109, USA **Keywords** Arsenate · Bioreduction · Chromate, Dibromochloropropane · Hydrogen · Membrane biofilm reactor · Oxidized contaminants · Perchlorate · Selenate

Introduction

In recent years, several oxidized contaminants have emerged as serious drinking-water pollutants, including nitrate (NO_3^-), arsenate ($H_2AsO_4^{2-}$), perchlorate (ClO_4^-), chlorate (ClO_3^-), chromate

 (CrO_4^{2-}) , selenate (SeO_4^{2-}) , and pesticides like dibromochloropropane (DBCP). While nitrate is a long-standing water-quality problem, the others fall into the category of emerging contaminants.

Arsenic has become a global public-health problem due to its acute and broad toxicity (Leonard 1991; Naqvi et al. 1994), and it has a complex geochemistry that governs the speciation and distribution of its two most prevalent oxidation states found in nature: arsenate (As(V)) and arsenite (As(III)) (Cullen and Reimer 1989; Jain et al. 1999; Masscheleyn et al. 1991). Sub-acute doses produce effects in the respiratory, gastrointestinal, cardiovascular, and nervous systems (Jain and Ali 2000). Recently, the USEPA reduced the maximum contaminant level (MCL) for arsenic in drinking water from 50 to 10 μ g-As I⁻¹, effective in 2006 (USEPA 2001).

Perchlorate (ClO $_4$), which is the most oxidized form of chlorine (Cl(VII)), is found in ground-water throughout the United States (USEPA 2004) and interferes with iodide uptake into the thyroid gland, disrupting thyroid function (Capen and Martin 1989; Wolff 1998; Clark 2000) and making it an endocrine disruptor. The California notification level is 6 μ g l $^{-1}$ (CDHS 2005), and the USEPA is considering a similar standard.

Chlorate (Cl(V)) has been used as an herbicide to kill all terrestrial plants except mosses. The only other major source of chlorate input to the environment is pulp mill effluent, where chlorine dioxide is used for bleaching. Chlorate is a partial reduction product from perchlorate and appears to be more toxic than perchlorate (Stouthamer 1967; Anderson et al. 2000).

Selenium is widely used in a variety of industries, including production of glass, pigments, pesticides, stainless steel, and photoelectric cells (Haygarth 1994), and it can cause environmental problems: for example, bird malformations due to selenium have been reported in the San Joaquin Valley in central California (Ohlendorf and Santolo 1994; Oremland et al. 1989, 1990). Selenate (Se(VI)), the most oxidized form of selenium, and selenite (Se(IV)) are highly water soluble and are toxic to biological systems at relatively low concentrations. Elemental selenium (Se°) is highly insoluble in water and therefore has minimal toxicity (Doran 1982). The MCL for drinking

water is $50 \mu g$ -Se l^{-1} total selenium (USEPA 2003a).

The widespread use of chromate in industries such as leather tanning, metallurgy, electroplating, nuclear reactor operation, and irradiated fuel processing and fabrication has resulted in large quantities of chromium being discharged into the environment (Riley and Zachara 1992; Barnhart 1997). In the natural environments, chromium is found in trivalent (Cr(III)) and hexavalent (Cr(VI)) forms. Of these, Cr(III) is far less toxic than Cr(VI) and is far less mobile in groundwater, being found either as cationic species that sorb to solids or as relatively insoluble precipitates, such as Cr(OH)₃ (Anderson and Kozlovsky 1985; Palmer and Wittbrodt 1991). On the other hand, Cr(VI) is highly soluble and, therefore, mobile and bioavailable in aquatic systems (Dragun 1988; Rai et al. 1987). The MCL for drinking water is 100 µg- $Cr l^{-1}$ total chromium (USEPA 2003a).

DBCP is a pesticide that is a persistent problem in many agricultural areas, such as the San Joaquin Valley of California. DBCP was used extensively as a nematocide for soil fumigation from the 1960s until it was banned in 1977. DBCP is a potent carcinogen and perhaps the most powerful testicular toxin ever made (Environmental Working Group 1999). Other adverse effects from exposure to levels above 0.2 parts per billion for "relatively short periods of time" include liver and kidney damage (USEPA 2003a).

In numerous cases, two or more of the oxidized contaminants occur together, and a treatment technology that can detoxify all of them simultaneously would be of high value. Oxidative processes, such as chlorine oxidation or ozonation, are ineffective. Conventional water-treatment processes, such as coagulation and precipitation, are effective, but limited to low ferric- or alumdose applications, because high coagulant dose will result in too-frequent backwashes (USEPA 2003b). Some advanced separation treatment processes, such as reverse osmosis, ion exchange, membrane filtration, and electrodialysis, are effective, but are expensive and generate concentrated wastes that require subsequent disposal (Komori et al. 1990; Srivastava et al. 1986).

A promising approach to detoxify all of the oxidized contaminants together is biological

reduction to harmless or immobile forms. For example, biological reduction of ClO₄ and ClO₃ produces harmless Cl⁻ and H₂O, while reductions of AsO₄²⁻, CrO₄²⁻, and SeO₄²⁻ can lead to insoluble and immobile As₂S₃, Cr(OH)₃, and Se°, respectively. Reduction of DBCP creates harmless Cland Br⁻, as well as non-toxic and biodegradable propane (Castro and Belser 1968; Babich et al. 1981). For biological reduction, a microbiologically available electron donor must be added. Hydrogen (H₂) is the ideal electron donor, because it is non-toxic, relatively inexpensive, and sparingly soluble, and it supports autotrophic bacteria, which require no organic-C source (Lee and Rittmann 2002; Nerenberg et al. 2002). Furthermore, research over the past 10-15 years suggests that H₂ is the one electron donor that bacteria can use to reduce all of the oxidized contaminants (Rittmann et al. 2004). Thus, using H₂ opens the door to simultaneous reduction of mixtures of oxidized contaminants.

The membrane biofilm reactor (MBfR) is a recent technological advance that makes it pos-

sible to deliver H₂ gas to bacteria efficiently and safely, despite hydrogen's low water solubility and risk of forming a combustible atmosphere when mixed with air (Lee and Rittmann 2002; Rittmann et al. 2004; Nerenberg and Rittmann, 2004). Here, we test the hypothesis that H₂-based, denitrifying MBfRs simultaneously reduces combinations of nitrate, selenate, chromate, perchlorate, chlorate, arsenate, and DBCP found in contaminated groundwater.

Materials and methods

Experimental set-up

A schematic and characteristics of the MBfRs used in this study are shown in Fig. 1. Each MBfR system consisted of two membrane modules connected in a recirculation loop. Three MBfRs were fed with different media: MBfR A received actual contaminated groundwaters, MBfR B initially received a selenate-contaminated medium, and

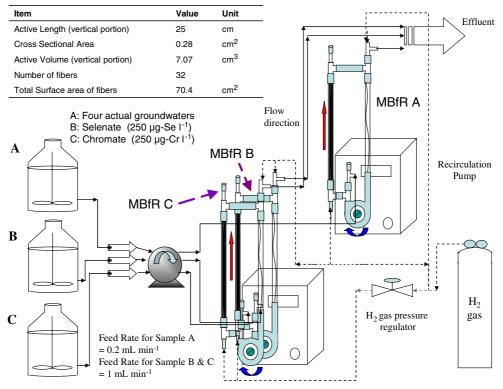


Fig. 1 Schematic and physical characteristics of the bench-scale MBfRs used in this study

MBfR C initially received a chromate-contaminated medium. The main membrane module contained a bundle of 32 hydrophobic hollow-fiber membranes (Model MHF 200TL, Mitsubishi Rayon) inside a polyvinyl chloride pipe shell, while the other module contained a single fiber used to take biofilm samples without disrupting the biofilm in the main module. A manifold peristaltic pump (Gilson Minipuls 3, Middleton, WI) was used with PVC tubing to give feed rate of 0.2 and 1 ml min⁻¹ for actual groundwaters and the synthetic media containing selenate and chromate, respectively. The system behaved as a completely mixed biofilm reactor because of the high recirculation rate (150 ml min⁻¹), and the high recirculation rate helped maintain a consistent biomass accumulation on the hollow-fibers. The supplied H₂ was transferred through the fiber walls to the surrounding biofilm and the standard H₂ pressure was 2.5–4 psi (0.17–0.31 atm).

Inoculation, start up, and steady states

The inoculum was obtained from the pilot-scale MBfR operated at La Puente, California (Ritt-mann et al. 2004). The pilot-scale reactor treated groundwater with approximately 5 mg-N l⁻¹ nitrate and 60 μg-ClO₄ l⁻¹ perchlorate. It had two modules in series; most of the nitrate was removed in the first module and most of the perchlorate in the second. Biofilm samples were taken from both modules and mixed together. This mixture was added to a sterile glycerol solution, with a final concentration of 25% glycerol, and stored at -80°C. For inoculating the MBfRs, biofilm samples were thawed, washed twice by centrifuging for 15 min at 5,000 g, and resuspended in 10-ml of sterile minimal medium without electron donor. A

1.5-ml aliquot of the washed biofilm suspension was added into the reactor.

Start up of each system began when H₂ gas was supplied, and the liquid in the reactor was recirculated for 24 h to establish a biofilm. Then, the first groundwater sample (denoted 061004) was fed at a rate of 0.2 ml min⁻¹ to MBfR A. This condition was maintained until a steady state was achieved. Later, two other groundwaters (denoted 062204 and 062304) were applied sequentially to MBfR A until each achieved steady-state performance. Synthetic feed medium without selenate or chromate was applied at a rate of 0.2 ml min⁻¹ to start up MBfRs B and C. The concentration of nitrate in the effluent declined rapidly in B and C and approached steady state after around 3 days, and then the feed rate was increased to 1.0 ml min⁻¹. After nitrate was completely removed with the higher influent flow rate (20-25 days), selenate and chromate were added to the influent of MBfR B and C at 250 $\mu g\text{-}$ (Se for B or Cr for C) l⁻¹. After about 40 days from when Se(VI) and Cr(VI) feeding began, the reduction of Se(VI) and Cr(VI) reached steadystate conditions.

Groundwater and synthetic selenate/chromate media

The three contaminated-groundwater samples (identified as 061004, 062204, and 062304) were collected from California's Central San Joaquin Valley, packaged in insulated containers with blueice, and shipped by overnight to the authors' laboratory and to the Clinical Laboratories of San Bernadino, California. Water quality assays were carried out at both laboratories, as described below Table 1. Once received at the authors' laboratory,

Table 1 Summary of the analytical characterization of the three groundwaters in terms of oxidized components

	Unit	Method	061004	062204	062304
Nitrate-N	mg-N l ⁻¹	EPA 300.0	10.8	13.1	21.4
Nitrite-N	$mg-N l^{-1}$	EPA 300.0	N.D.	N.D.	N.D.
Sum of perchlorate and chlorate	μg -ClO ₄ l ⁻¹	EPA 300.1	82	34	N.D.
Sulfate	$Mg l^{-1}$	EPA 300.0	63	27	34
Arsenic	μg 1 ⁻¹	SM 3113B	N.D.	8.8	3.0
DBCP	$\mu g 1^{-1}$	EPA 504.1	1.4	N.D.	0.014

N.D.: Not detected at or not above the detection limit for reporting

the water was stored in a cold room at 4°C and brought to room temperature (20°C) before it was fed into MBfR A. No chemical additions were made during the use of actual contaminated groundwaters. MBfR A was sequentially fed groundwaters 061004, 062204, and 062304 in this order.

The composition of the synthetic feed medium applied to MBfRs B and C was (g l⁻¹): KH₂PO₄ 0.128, 100, Na₂HPO₄ 0.434, MgSO₄ · 7H₂O 0.2, NaNO₃ as N 0.03, CaCl₂ · 2H₂O 0.001, FeS-O₄ · 7H₂O 0.001, and 1 ml of trace mineral solution. The trace mineral solution $(mg l^{-1})$ consisted of ZnSO₄ · 7H₂O 100, MnCl₂ · 4H₂O 30, H₃BO₃ 300, CoCl₂ · 6H₂O 200, CuCl₂ · 2H₂O 10, NiCl2 · 6H₂O 10, Na₂MoO₄ · 2H₂O 30, and Na₂SeO₃ 30. The were prepared in an 8-1 glass bottle (Pyrex) and filter sterilized into another sterile 8-1 glass bottle using a capsule filter (Pall SuporCap 100, Pall Corporation, Ann Arbor, MI). The nitrate concentration was 5 mg-N l^{-1} and 78.5 mg $SO_4^{2-} l^{-1}$; these nitrate and sulfate are concentrations representative of selenatecontaminated groundwater in the San Joaquin Valley (Presser and Ohlendorf 1987; Ohlendorf 1989; Cantafio et al. 1996; Zhang et al. 2003). When selenate and chromate were added to media, the influent concentrations were 1,000 µg-Se l^{-1} or 1,000 µg-Cr l^{-1} for MBfRs B and C, respectively.

Sampling and analyses performed at Northwestern University

Groundwater quality and the performance of the reactors were monitored by analyzing effluent samples taken on a daily basis and immediately filtered through a 0.2-µm membrane filter (Pall Corp., Ann Arbor, ML). Analyses for nitrate, nitrite, chlorate, and perchlorate were carried out by ion chromatography (Dionex 4500) using an AS-11 column, an AS-11 pre-column, and a 200-µg l⁻¹ injection loop, as described in Nerenberg et al. (2002). Perchlorate and chlorate eluted at the same time; thus, the concentration is reported as perchlorate + chlorate in µg-ClO₄ l⁻¹. The sulfate concentration was measured using a capillary ion analyzer (CIA, Millipore Corp., Milford, MA).

After sample centrifugation (15,000 g, 10 min), total soluble selenium (Se(IV) + Se(VI)) and chromium (Cr(III) + Cr(VI)) were determined by ICP-MS (PQExCell, VG Elemental). In order to investigate the degree of reduction of oxidized contaminants, Se(IV) and Cr(VI) concentrations were analyzed by a fluorometric method for Se(IV) (Standard method 3500-Se E) and diphenyl carbazide method (3500-Cr D) for Cr (VI). The Cr(III) concentration was determined by subtracting Cr(VI) from total chromium. The concentration of Se(VI) was calculated by subtracting Se(IV) from total Se in the effluent. This approach assumes that selenium reduced to Se° results in a solid that is removed by centrifugation. The concentration of selenium removed as Se° is computed as the difference between influent and effluent total Se.

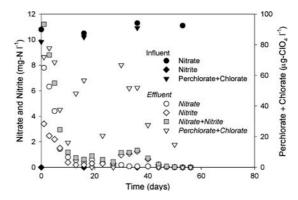
The procedure for arsenic speciation was as follows: A 250-ml bottle (identified as bottle A) was used to contain an unfiltered sample, which was analyzed to determine the total arsenic concentration (soluble + particulate). The soluble portion of the sample was obtained after filtration through a 0.45-µm screw-on disc filter to remove any particulate arsenic; the filtrate was collected in a 125-ml bottle (identified as bottle B). Bottle B contained 0.05% (V/V) pure sulfuric acid to acidify the sample to about pH 2. At this pH, As(III) was completely protonated to H₃AsO₃, and As(V) was present in ionic and protonated forms. A portion of the acidified sample in bottle B was run though the resin column. The resin retained the As(V) and allowed As(III) to pass through the column (Note that the resin retains only H₂AsO₃ and that H₃AsO₄, when passing through the column was ionized to H₂AsO₃ due to elevated pH values in the column caused by the buffer capacity of acetate exchanged from the resin). The column was eluted by draining, and the elutant of the column was collected in another bottle (identified as bottle C). Samples in bottles A, B, and C were analyzed for total arsenic using ICP-MS (PQExCell, VG Elemental). The As(III) concentration was the total arsenic concentration of the resin-treated sample in bottle C. The As(V) concentration was calculated by subtracting As(III) from the total soluble arsenic concentration of the sample in bottle B (USEPA 2000).

Analysis of DBCP

All analyses for DBCP were performed by the Clinical Laboratories of San Bernadino according to EPA method 504.1. DBCP was concentrated by micro-extraction into hexane: 35 ml of sample were extracted with 2 ml of hexane in sample/hexane mixed vials using an auto-injector. 2 µl of the extract are then injected into a GC equipped with an electron capture detector for separation and analysis. Aqueous calibration standards were extracted and analyzed in an identical manner as the samples in order to compensate for possible extraction losses. The extraction and analysis time was 30–50 min per sample.

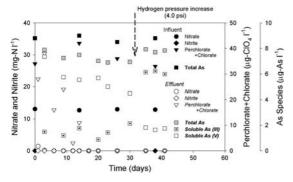
Results and discussion

Groundwater quality


For experiments with different combinations of NO₃, ClO₄, ClO₃, AsO₃², and DBCP, the influents were the three actual groundwaters contaminated with different mixtures of the emerging oxidized contaminants and NO₃. Table 1 summarizes the water quality in terms of oxidized component for the three groundwaters. All the groundwaters had at least two oxidized contaminants, as well as significant sulfate. Three samples exceeded the 45 mg l⁻¹ nitrate concentration (or 10 mg-N l⁻¹) MCL in the United States (USEPA 2003c). Besides nitrate, sample 061004 contained 82 μg-ClO₄ l⁻¹ perchlorate + chlorate, 1.4 μg l⁻¹ of DBCP, and 63 mg l⁻¹ sulfate; sample 062204 contained 34 µg-ClO₄ l⁻¹ perchlorate + chlorate, 8.8 μg-As l⁻¹ total arsenic, and 27 mg l⁻¹ sulfate; and sample 062304 had 1.8 µg-As l⁻¹ total arsenic and 34 mg l^{-1} sulfate.

Simultaneous bio-reduction in the groundwaters

Naturally occurring mixed-culture biofilms developed in the MBfR were sequentially fed to groundwaters 061004, 062204, and 062304. The MBfRs were operated at a pH of 7, a $\rm H_2$ pressure of 3.0 psi (0.21 atm), and a 100-min hydraulic retention time.


The first groundwater sample (061004) contained 11 mg-N l⁻¹ nitrate, 82 µg-ClO₄ l⁻¹ perchlorate + chlorate, and $1.4 \mu g l^{-1}$ of DBCP. Within 1 day after feeding sample 061004, 38% of the nitrate was reduced to nitrite or nitrogen gas, shown in Fig. 2. Perchlorate + chlorate removal was 12% by day one. Reductions of nitrate and perchlorate increased gradually, and, by 50 days, the MBfR removed the nitrate, nitrite, perchlorate, and chlorate completely. Once nitrate had been reduced to non-detect levels $(0.01 \text{ mg-N l}^{-1})$ in the effluent (day 36), influent and effluent sampled were submitted for DBCP analysis. The MBfR was operated continuously for an additional 2 weeks, with influent and effluent samples collected and submitted for a second DBCP analysis on day 50. The concentration of DBCP in both effluent samples was below the 0.01-µg l⁻¹, the detection limit of EPA method 504.1, compared to the influent concentration of 1.4 μ g l⁻¹, which was maintained for all influent samples. These results indicate that the MBfR effectively reduced DBCP. Since partial dehalogenation products were not assayed, full reduction to propane cannot be proven.

The second groundwater (062204) contained 13 mg-N l⁻¹ nitrate, 34 μ g-ClO₄ l⁻¹ perchlorate + chlorate, 27 mg-SO₄²⁻ l⁻¹ sulfate, and 7.3 μ g-As l⁻¹ arsenate. Figure 3 shows the perchlorate + chlorate, nitrate, nitrite, and arsenic species (total, soluble As(V), and soluble As(III)) in the effluent from MBfR. Nitrate, perchlorate,

Fig. 2 Concentrations of nitrate, nitrite, and perchlorate + chlorate in groundwater 061004 before and after treatment by MBfR A. (Left Y-axis: Nitrate and nitrite (mg-N l^{-1}), Right Y-axis: Perchlorate + Chlorate (µg-ClO₄ l^{-1}))

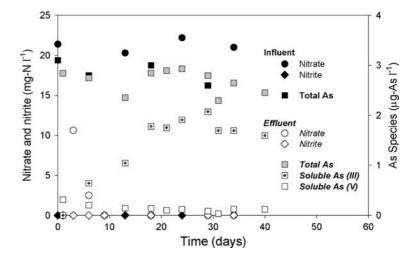
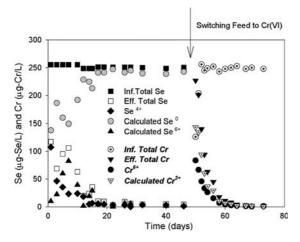


Fig. 3 Concentrations of contaminants in groundwater 062204 before and after treatment by MBfR A (Left Y-axis: Nitrate and nitrite (mg-N l^{-1}), right Y-axis: Perchlorate + chlorate (μ g-ClO₄ l^{-1}), and Right-end Y-axis: Total As, soluble As(III) and As(V) (μ g-As l^{-1}))

and chlorate were completely reduced by 20 days. Reduction of As(V) to As(III) began within 2 days, and As(V) reduction to As(III) was 40% by day 24, yielding an effluent soluble As(V) concentration of 5.4 µg-As l⁻¹. Effluent soluble As(III) was 1.6 μg-As l⁻¹, making total As at day 24 approximately $7 \mu g$ -As l^{-1} , and the average sulfate concentration in effluent somewhat decreased to 22 mg-SO₄²⁻ l⁻¹. This result means that total-As removal, presumably as $As_2S_{3(s)}$, was approximately 20% as a maximal value. The H₂ pressure was increased to 4.0 psi (from 2.5 psi) on day 31 to increase H₂ availability. With the first sample after the pressure change (day 35), the As(V) concentration in the effluent decreased significantly and then remained steady at about 1.8 μ g-As l⁻¹, or 80% reduction Effluent As(III) was 6.1 μ g-As l⁻¹, total soluble As in the effluent was around 8 μ g-As l⁻¹, and sulfate was 20 mg-SO₄²⁻ l⁻¹. These results confirm that As(V) reduction was controlled by H₂ availability and that the likely sink for total As was As₂S_{3(s)}.

The third groundwater (062304) had relatively high nitrate (21 mg-N l⁻¹) and low arsenate $(3 \mu g$ -As $l^{-1})$. DBCP also was present at $0.014 \mu g l^{-1}$, a value barely above the detection limit of $0.01 \mu g l^{-1}$. Due to the very low DBCP concentration in this sample, effluent samples were not submitted for DBCP analysis. The H₂ pressure was 4.0 psi (0.31 atm) over the entire experimental period. Figure 4 shows the effluent results for sample 062304. Even though a relatively high nitrate loading were applied in the influent, nitrate decreased to essentially zero within 9 days, and nitrite never appeared. By Day 7, As(V) was being reduced and to As(III). Steady-state reduction of As(V) to As(III) was evident by day 18, and the average effluent levels of As(III) and As(V) after day 18 were 1.8 ± 0.2 and $0.64 \pm 0.2 \,\mu\text{g-As l}^{-1}$, respectively. Thus, the average reduction of As(V) to As(III) was around 60%. Also, the sulfate concentration contained in this groundwater was 34 mg- SO_4^{2-} l⁻¹, and the average concentration in effluent was 28 mg- $SO_4^{2-} l^{-1}$. Effluent total As was approximately 2.4 μ g-As l⁻¹, which indicates that only a small amount of As was precipitated as As₂S_{3(s)} or adsorbed as As(V) in the biofilm.

Fig. 4 Concentrations of contaminants in groundwater 062304 before and after treatment by MBfR A (Left Y-axis: Nitrate and nitrite (mg-N l⁻¹) and right Y-axis: Total As, soluble As(III) and As(V) (μg-As l⁻¹))

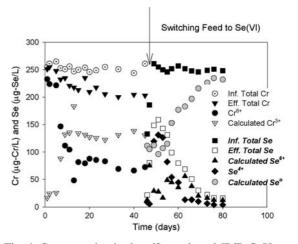


Removals of selenate and chromate

For experiments with selenate and chromate, a synthetic influent included 5 mg-N l⁻¹ nitrate and 78.5 mg l⁻¹ sulfate as potential primary electron acceptors, plus 250 μ g l⁻¹ of one of the oxidized contaminants. MBfR B initially received selenate, and MBfR C initially received chromate. The H₂ pressure was 2.5 psi (0.17 atm). For both MBfRs, nitrate and nitrite concentrations in the effluent dropped to less than 15 μ g-N l⁻¹ within 10 days and were stable at this level for the remainder of the experiments. Addition of selenate or chromate began on day 50.

For MBfR B (Fig. 5), Se(VI) was reduced to Se(IV) within one day of Se(VI) addition, and Se(IV) begun to be removed through reduction to Se° at the same time. On day 18 after Se(VI) feeding began, Se(IV) in the effluent from the MBfR was below 10 μg-Se l⁻¹, and 97% of the input Se(VI) was reduced to solid Se° within 20 days. This suggests that dissimilatory selenatereducing bacteria were present in the biofilm in significant numbers, but that continuous exposure to Se(VI) provided a selective pressure that further enriched these bacteria. The Se(VI) flux was 0.034 g-Se(VI) m⁻² of biofilm surface area/ day, and nitrate and sulfate fluxes were 0.710 g- NO_3^- m⁻² days and 7.92 g- SO_4^{2-} m⁻² days, respectively. Converted to common electron-equivalent

Fig. 5 Concentrations in the effluent from MBfR B. Up to day 49, 5 mg I^{-1} of NO_3^-N and 250 μ g-Se I^{-1} were in the influent. From day 50, 5 mg I^{-1} of NO_3^-N and 250 μ g-Cr I^{-1} were in the influent (Left Y axis: Se species in μ g-Se I^{-1} and Cr species in μ g-Cr I^{-1})


units, selenate, nitrate, and sulfate fluxes were 0.48, 57.2, and 702 e⁻meq m⁻² days, respectively.

For MBfR C (Fig. 6), reduction of Cr(VI) to Cr(III) began immediately, indicated by 25 µg-Cr l⁻¹ of Cr(III) in the effluent sample after 1 day of Cr(VI) addition, and steady-state reduction of Cr(VI) to Cr(III) was evident by day 13 of feeding Cr(VI). The average removal of Cr(VI) was 170 μg-Cr l⁻¹, or 65%. Effluent Cr(III) was $123 \pm 18 \mu g$ -Cr l⁻¹, or 49%. The effluent concentration of total Cr reached approximately 210 µg- $Cr l^{-1}$ (or 84%), which indicates that the most reduced Cr(III) was not a solid (likely Cr(OH)₃) that was removed by adsorption to the biofilm. The success of precipitation depends on how the solubility compares to the target Cr(III) concentration. The conditional solubility of Cr(III) calculated for pH = 7.3 in this study is approximately 66 μ g-Cr l⁻¹, based on the following reactions and equilibrium constants (at 25°C) for the Cr(III)hydroxide complexes (Rai et al. 1987):

$$Cr(OH)_{3(s)} + 3H^{+} \Leftrightarrow Cr^{3+} + 3H_{2}O$$

$$log K = 9.8$$
(1)

$$\begin{aligned} & Cr(OH)_{3(s)} + 2H^+ \Leftrightarrow CrOH^{2+} + H_2O \\ & log \ K = 6.0 \end{aligned} \tag{2}$$

Fig. 6 Concentration in the effluent from MBfR C. Up to day 45, 5 mg l^{-1} of NO₃-N and 250 μ g-Cr l^{-1} were in the influent. From day 46, 5 mg l^{-1} of NO₃-N and 250 μ g-Se l^{-1} were in the influent. (Left Y axis: Cr species in μ g-Cr l^{-1} and Se species in μ g-Se l^{-1})

$$\begin{aligned} & Cr(OH)_{3(s)} + H^+ \Leftrightarrow Cr(OH)_2^+ + H_2O \\ & log \, K = -0.4 \end{aligned} \tag{3}$$

$$Cr(OH)_{3(s)} \Leftrightarrow Cr(OH)_{3(aq)}$$

$$log K = -6.0$$
(4)

$$Cr(OH)_{3(s)} + H_2O \Leftrightarrow Cr(OH)_4^- + H^+$$

$$\log K = -18.3$$
(5)

$$\begin{aligned} 2Cr(OH)_{3(s)} + 4H^+ &\Leftrightarrow Cr(OH_2)^{4+} + 4H_2O \\ &\log K = 14.4 \end{aligned} \tag{6}$$

$$3Cr(OH)_{3(s)} + 5H^{+} \Leftrightarrow Cr_{3}(OH)_{4}^{5+} + 5H_{2}O$$

 $log K = 18.5$ (7)

Since the measured Cr(III) concentration was substantially higher than 66 μg-Cr l⁻¹, soluble Cr(III) may have been prevented from precipitating with HO due to its complexation with phosphate, sulfate, or organic ligands (Evanko and Dzombak 1997; Armienta and Quere 1995). In particular, phosphate was relatively high in the synthetic groundwater (0.004 M). Such a high phosphate level is unlikely in actual groundwaters. Thus, the key finding here is that the reduction of Cr(VI) to Cr(III) gives a conditional solubility of Cr(III) lower than the MCL of 100 μ g-Cr l⁻¹. The Cr(VI) flux was 0.021 g-Cr(VI) m⁻² days, and nitrate and sulfate flux were 0.684 g-NO₃ m⁻² days and 0.510 g-SO₄²⁻ m⁻² days, respectively. Converted to common e eq units, Cr(VI), nitrate, and sulfate fluxes were 0.54, 66.9, and 425 e⁻ $meq m^{-2}$ days, respectively.

Once stable reductions of selenate and chromate were achieved in MBfRs B and C, the influent oxidized contaminant to each MBfR was switched; thus, the Se-reducing biofilm in MBfR B was exposed to chromate and vice versa. As shown in Fig. 6, Cr(VI) reduction to Cr(III) was immediate and increased to essentially 100%

reduction within 20 days. Almost no Cr(III) appeared in the effluent by 20 days: all chromium species in effluent were below 10 μ g-Cr l⁻¹, and the chromium reduction rate in MBfR B was higher than it had been in the Cr-reducing MBfR C. The Cr(VI) flux in Se-reducing MBfR B increased by 0.031 g-Cr(VI) m⁻²·d, and electron-equivalent flux also increased to 0.80 e⁻ meq - m⁻²·d.

As soon as Se(VI) feeding began to the Crreducing MBfR C (Fig. 6), Se(VI) was reduced to Se(IV) and Se°. Over the next 30 days, the amount of Se(VI) reduction increased to over 90%, and the end product was mostly Se°.

The results for switching oxidized contaminants to MBfRs B and C supports that using H_2 as the electron donor in the MBfR setting accumulated significant numbers of bacteria able to reduce selenate and chromate together. The results presented here cannot be used to determine the degree to which the same bacteria could reduce both oxidized contaminants, but the immediate onset of major reduction after the switch in both MBfRs suggests that the overlap of reduction capability is significant.

We confirmed at bench-scale that MBfRs have the potential to reduce perchlorate (+chlorate), selenate, chromate, and arsenate. A major difference between the bio-reduction of the abovementioned contaminants and the more familiar biological denitrification is that perchlorate, chlorate, selenate, chromate, and arsenate typically are present at concentrations orders of magnitudes lower than nitrate. Consequently, these oxidized contaminants probably are reduced as secondary substrates, with another electron acceptor (oxygen, nitrate, and/or sulfate in this case) serving as the primary substrate, i.e., the acceptor whose reduction generates most of the energy for the microorganisms' synthesis and maintenance. Nerenberg and Rittmann (2002) saw secondary utilization in an MBfR when small concentrations of perchlorate were reduced concurrently with larger concentration of nitrate. Since a significant biomass can be sustained by utilization of the primary substrate, secondary utilization makes it possible to achieve very low effluent concentrations of the secondary substrate.

Conclusion

We investigated if directly using H₂ as the electron donor in an MBfR setting allows simultaneous reduction of many different combinations of oxidized contaminants. First, the H₂-based MBfR simultaneously reduced different combinations of nitrate, nitrite, perchlorate + chlorate, arsenate, and DBCP in three contaminated groundwaters from California's San Joaquin Valley. Nitrate reduction to N₂ for all groundwaters was complete, and As(V) was substantially reduced to As(III) for two samples. Perchlorate and chlorate were reduced to below the California Notification Level $(6 \mu g l^{-1})$. DBCP present in one groundwater was also reduced to below its detection limit of $0.01 \,\mu g \, l^{-1}$. Second, switching the influent oxidized contaminant from selenate to chromate or from chromate to selenate gave immediate and significant reduction of the new contaminant in MBfRs treating one contaminant, but not having been previously exposed to the new contaminant. These results support that the H₂-based MBfR can treat multiple oxidized contaminants simultaneously, which addresses the common groundwater situation of having multiple oxidized contaminants.

Acknowledgements This work was supported by the National Water Research Institute (NWRI) and the Applied Process Technology, Inc. (APT).

References

- Anderson RC, Buckley SA, Kubena LF, Stanker LH, Harvey RB, Nisbet DJ (2000) Bactericidal effect of sodium chlorate on *Escherichia coli* O157:H7 and *Salmonella typhimurium* DT104 in rumen contents in vitro. J Food Protect 63:1038–1042
- Anderson RA, Kozlovsky AS (1985) Chromium uptake, absorption, and excretion of subjects consuming selfselected diets. Am J Clin Nutr 41:1177–1183
- Armienta MA, Quere A (1995) Hydrogeochemical behavior of chromium in the unsaturated zone in the aquifer of Leon Valley, Mexico. Water Air Soil Poll 84:11–29
- Babich H, Davis DL, Stotzky G (1981) Dibromochloropropane (DBCP): a review. Sci Total Environ 17:207– 221
- Barnhart J (1997) Occurrences, uses and properties of chromium. Regul Toxicol Pharm 26:s3-s7

- Cantafio AW, Hagen KD, Lewis GE, Bledsoe TL, Numan KM, Macy JM (1996) Pilot-scale selenium bioremediation of San Joquin drainage water with *Thauera selenatis*. Appl Environ Microbiol 62:3298–3303
- Capen CC, Martin SL (1989) The effects of xenobiotics on the structure and function of thyroid follicular and ccells. Toxicol Pathol 17:266–293
- Castro CE, Belser NO (1968) Biodehalogenation, reductive dehalogenation of the biocides ethylene dibromide, 1,2-dibromo-3-chloropropane, and 2,3-dibromobutane in soil. Environ Sci Technol 2:779–783
- CDHS (2005) Perchlorate in California Drinking Water: Overview and Links. Department of Health Services, Sacramento, California. Updates on June 7, 2005-12-05 (http://www.dhs.ca.gov/ps/ddwem/chemicals/perchl/ perchlindex.htm)
- Chung J, Xiaohao L, Rittman BE (in press) Bio-reduction of arsenate using a hydrogen-based membrane biofilm reactor. Chemosphere
- Clark JJ (2000) Toxicology of perchlorate. In: Urbansky ET, (ed) Perchlorate in the Environment. Kluwer Academic/Plenum Publishers, New York, pp 15–29
- Cullen WR, Reimer KJ (1989) Arsenic speciation in the environment. Chem Rev 89:713–764
- Doran JW (1982) Advances in microbial ecology, vol. 6 Plenum Publishing Corp, New York, pp 1–32
- Dragun J (1988) Element fixation in soil. In: The soil chemistry of hazardous materials. Hazardous Materials Control Research Institute, Greenbelt, MD, pp 75–152
- Environmental Working Group (1999) Tap water in 38 central Calif. Cities tainted with banned pesticide some bottle-fed infants may exceed 'safe' dose before age 1. EWG California Policy Memorandum. (http://www.ewg.org/reports_content/dbcp/dbcp.pdf)
- Evanko CR, Dzombak DA (1997) Remediation of Metals
 Contaminated Soil and Groundwater. GWRTAC
 Technology Evaluation Report. TE-97-01. Ground-Water Remediation Technologies Analysis Center,
 Pittsburgh, PA
- Haygarth PM (1994) Global importance and global cycling of selenium. In: Frankenberger WT, Benson S (ed), Selenium in the environment. Marcel Dekker Inc, New York, pp 1–27
- Jain CK, Ali I (2000) Arsenic: occurrence, toxicity, and speciation techniques. Wat Res 34:4304–4312
- Jain A, Raven KP, Loeppert RH (1999) Arsenite and arsenate adsorption on ferrihydrite: surface charge reduction and net OH⁻ release stoichiometry. Environ Sci Technol 33:1179–1184
- Komori KA, Rivas A, Toda K, Ohtake H (1990) A method for removal of toxic chromium using dialysis-sac cultures of a chlomate-reducing strain of *Enterobacter cloacae*. Appl Microbiol Biotechnol 33:117–119
- Lee KC, Rittmann BE (2002) Applying a novel autohydrogenotrophic hollow-fiber membrane biofilm reactor for denitrification of drinking water. Wat Res 36:2040–2052

- Leonard A, (1991) Arsenic. In: Merian E (Ed), Metals and their compounds in the environments, occurrence, analysis, and biological relevance. Weinheim, VCH, pp 751–774
- Masscheleyn PH, Delaune RD, Patrick WH (1991) Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil. Environ Sci Technol 25:1414–1419
- Naqvi S, Vaishnavi C, Singh H, (1994) Human health and ecosystems effects. In: Nriagu JR (ed) Arsenic in the environment Part II. John Wiley, New York, pp 187
- Nerenberg R, Rittmann BE, Najm I (2002) Perchlorate reduction in a hydrogen-based membrane-biofilm reactor. J Am Water Works Ass 94:103–114
- Nerenberg R, Rittmann BE (2002) Perchlorate as a secondary substrate in a denitrifying hollow-fiber membrane biofilm reactor. Water Sci Technol Water Supply 2:259–265
- Nerenberg R, Rittmann BE (2004) Hydrogen-based, hollow-fiber membrane biofilm reactor for reduction of perchlorate and other oxidized contaminants. Water Sci Technol 49: 11–21
- Ohlendorf HM (1989) Bioaccumulation and effects of selenium in wildlife. In: Jacobs LW (ed) Selenium in agriculture and the environment. ASA & SSSA, Madison, WI, pp 133–177
- Ohlendorf HM, Santolo GM (1994) Kesterson Reservoir-Past, present and future: an ecological risk assessment. In: Frankenberger JR, Benson S (eds) Selenium in the environment. Marcel Dekker, New York, pp 69–117
- Oremland RS, Hollibaugh JT, Maest AS, Presser TS, Miller LG, Culbertson CW (1989) Selenate reduction to elemental selenium by anaerobic bacteria in sediments and culture: biogeochemical significance of a novel, sulfate-independent respiration. Appl Environ Microbiol 55:2333–2343
- Oremland RS, Steinberg NA, Maest AS, Miller LG, Hollibaugh JT (1990) Measurement of in situ rates of selenate removal by dissimilatory bacterial reduction in sediments. Environ Sci Technol 24:1157–1164
- Palmer CD, Wittbrodt PR (1991) Processes affecting the remediation of chromium-contaminant sites. Environ Health Persp 92:25–40
- Presser TS, Ohlendorf HM (1987) Biogeochemical cycling of selenium in the San Joaquin Valley, California, USA. Environ Manage 11:805–821

- Rai RG, Sass BM, Moore DA (1987) Chromium(III) hydrolysis constants and solubility of chromium(III) hydroxide. Inorg Chem 26:345–349
- Riley RG, Zachara JM (1992) Chemical contaminants on DOE lands and selection of contaminats mixtures for subsurface science research. U.S. Department of Energy, Washington, DC
- Rittmann BE, Nerenberg R, Lee KC, Najm I, Gillogly TE, Lehman GE, Adham SS (2004) Hydrogen-based hollow-fiber membrane biofilm reactor (MBfR) for removing oxidized contaminants. Wat Supply 4:127– 133
- Srivastava H, Mathur R, Mehrotra I (1986) Removal of chromium from industrial effluent by absorption on sawdust. Environ Technol Lett 7:55–63
- Stouthamer AH (1967) Nitrate reduction in *Aerobacter aerogenes*. I. Isolation and properties of mutant strains blocked in nitrate assimilation and resistant against chlorate. Archiv für Mikrobiologie 56:68–75
- USEPA (2000) Arsenic Removal from Drinking Water by Coagulation/Filtration and Lime Softening Plants. EPA/600/R-00/063, National Risk Management Research Laboratory, Office of Research and Development, Cincinnati (http://www.epa.gov/ORD/NRMRL/ pubs/600r00063/600r00063.pdf)
- USEPA (2001) National Primary Drinking Water Regulations; Arsenic and Clarifications to Compliance and New Source Contaminant Monitoring; Final Rule. Federal Register, 66(14) pp 6975–7066. January 22, 2001 (http://www.epa.gov/sbrefa/documents/pn114f.pdf)
- USEPA (2003a) National Primary Drinking Water Standard. EPA 816-F-03-016, Office of Groundwater and Drinking Water (4606M), Washington, DC
- USEPA (2003b) Arsenic Treatment Technology Evaluation Handbook for Small Systems. EPA 816-R-03-014, Office of Water (4606M), Washington, DC
- USEPA (2003c) Consumer Factsheet on: Nitrates/Nitrites. 2003 (http://www.epa.gov/safewater/contaminants/dw_contamfs/nitrates.html)
- USEPA (2004) Known Perchlorate Releases in the US December 10, 2004
- Wolff J (1998) Perchlorate and the thyroid gland. Pharmacol Rev 50:89–105
- Zhang Y, Zahir ZA, Frankenberger WT (2003) Factors affecting reduction of selenate to elemental selenium in agricultural drainage water by *Enterobater taylorae*. J Agric Food Chem 51:7073–7078

